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Abstract. A straight dislocation line in a decagonal quasicrystal is considered. For a decagonal
quasicrystal of point groups 1@0 and 1¢m with a straight dislocation parallel to the periodic
direction, the basic governing equations are solved by decoupling this problem into a plane elasticity
problem and an antiplane elasticity problem. For the latter, the solution is known; for the former,
it is reduced to a single equation? F(x, y) = 0, A being the harmonic operator, by introducing

a displacement functioi. A general solution is formulated. Using a general solution and the
Fourier transform, the explicit expressions for the dislocation-induced elastic field in a decagonal
quasicrystal are obtained and the energy per unit length on the dislocation is given.

1. Introduction

Quasicrystals—solids with a long-range orientational order and a long-range quasiperiodic
translational order [1, 2—have become the topic of considerable experimental and theoretical
studies in physics of condensed matter. Structural, electronic, magnetic, thermal and
mechanical properties of quasicrystals has been investigated intensively. In particular, the
research of defects has attracted extensive attention in both experiment and theory. For
conventional crystals, the elasticity theory of defects, as outlined in [3] and [4], has been
established and developed over 40 years. For quasicrystals, however, within the framework
of the Landau theory, the elasticity theory of defects such as dislocations was formulated
in 1985 [2, 5, 6], although the first experimental evidence for the existence of dislocations
in quasicrystals was not provided until 1989 [7-9]. According to the continuum theory of
dislocations in the general scheme of quasicrystal elasticity theory [10], the explicit expressions
for the elastic field, in particular for the displacement field, induced by a dislocation have been
obtained in several quasicrystals [11-15]. The first work in this area may be that of De and
Pelcovits [16], who analysed a dislocation in a planar pentagonal quasicrystal and gave the
analytical expressions for dislocation-induced displacement field by the iterative approach. So
far many methods such as the Green function method [11], the Eshelby method [14] and the
displacement function method [15] have been developed to derive analytical expressions for
dislocation-induced elastic field in various quasicrystals.

This paper considers a straight dislocation line in a decagonal quasicrystal with Laue
class 1Qm, or with point groups 1010 and 1¢'m, where the dislocation line is parallel to the
periodic direction. A general solution is suggested by introducing a displacement function for
a planar decagonal quasicrystal with point group 10 in section 2. The analytical expressions for
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the displacement field as well as stress field induced by a dislocation are obtained in section 3.
The elastic field and the energy per unit length on the straight dislocation line are both given
in section 4.

2. General solution of the governing equations for a planar decagonal quasicrystal

According to the description ofradimensional quasicrystal as a quasiperiodic structure which

is periodic in (3 +n)-dimensional space (X » < 3), the (3 +n)-dimensional space can be
divided into the direct sum of two orthogonal subspaces, one being three-dimensional physical
or parallel spaceF,, and the other being-dimensional perpendicular or complementary
spaceE, . Therefore, for each quasicrystal, there are two orthogonal coordinate systems, one
in E; and the other itk . In addition to the usual phonon displacementand phonon strains

&;; describing the local shifts of atoms &), one must introduce the phason displacements

and phason strains;; to describe the local rearrangements of atonis,in In this section, we
consider a planar decagonal quasicrystal of point group 10, which refers to a planar medium
with decagonal symmetry. In this case, the generalized Hooke law is as follows [11, 17]:

0ij = Cijrién *+ Rijruwu H;j = Kijwi + Ruijen 1)
with
Eij =(3jui+8iuj)/2 wijzajwi (2)

whered; = 9/dx; (the argument; is always inE), o;; andH;; are the stresses ity andE
respectivelyC;;, andK;;y elastic constants in the phonon and the phason field, respectively,
andR;;i; the phonon—phason coupling elastic constants. Moreover,

Cijir = M6 + (kb1 + 88 1)
Kiju = K168 1 + K2(8;j0k1 — 8116 i)
Riji = R1(8;1 — 8i2) (8ij0kr — Sixdju + 81 i)
+Ro[(1 — 8;j)8 + 8 (8i1 — 8i2) (Bk1812 — 8k2811)]

wherei, j, k, 1 =1, 2.
Substituting (1) and (2) into the equilibrium equations

B_jm_j =0 8_,~ Hi_,’ =0 (4)

leads to the basic governing equations for a planar decagonal quasicrystal of point group 10
below:

®3)

Cij0joiug + Rijid;0wy =0 (59)
Rk,,-ijB,uk+K;jk,8j8,wk =0. (5b)
Applying the theory of partial differential equations (e.g. see [18]), it follows from

equations (5) that the displacement field can be expressed in terms of two functioms
Y as follows:

up = (+A)d1dop + pdy + (2u + 1) 5y (6a)
uz = —[(2u + 1929 + pdsp + (1 + 1) d192] (6b)
w1 = —o{[2R1919; — Ro(07 — 9]¢ + [R1(0f — 93) + 2Rp0102]%)  (6c)
wp = 0{[R1(87 — 33) + 2R20182]¢ — [2R10102 — Ro (37 — 82)]¥/} (6d)

where
w=pnu+r)/R? R? = R?+R3. (7)
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Inserting expressions (6) into equations (5) reveals that equatiajsaf® identically
satisfied and that equationgHecome
(2 + A)c201A19 + pc1d2 A2 + (21 + )02 A1y — nerdi Ay =0 (89)
(2u + X)c201A29 — jue1d2 A1 + (2 + ) c202 A2 + uc1d1Ary =0 (8D)

where
A1 = R192(302 — 92) + R201(302 — 92) Az = R131(302 — 82) — R292(302 — 32) ©)
c1=2u+1)K,— R? cr = uk1— R?

A further simplification of (8) is achieved if we now choose a new functigrwhich is
called the displacement function, such that

@0 =—2u+X)c2RA1F + uc1RO1AF (10a)

¥ = (2 + A)coRIWALF + pci RO A F. (10b)
In this case, it is easily seen that:}]8s automatically satisfied andi{Bleads to

A*F =0 (11)

whereA = 812 + 822. Thus, the system of equations (5) is reduced to a single equation (11) for
F. Substituting (10) into (6) yields the displacement and stress fields:

Uy = R[c01A1 + c102A2]AF (12a)
Up = R[CzazAl — ClalAz]AF (12))
w1 = —cogA1A2F (12c)
wp = —R ™ c2Qu + M)A + c1u A3 F (12d)
o1l = 2c0cz322A1AF (13a)
022 = 2c0c2812A1AF (13p)
010 = 091 = —2¢9Cc20102A1AF (13c)
Hiy = —c1c2RAPF + R71Kodo[c2(2m + M) AZ + ciu A3 F (13d)
Hip = c1c2R3,APF — R™1Kod1[co(Qu + M) A3 + cyu A3 F (13¢)
Hy = —c1c2RMAPF — coKodpA1AsF (130)
Hyp = —c1c2R3A3F + coKod1 A1A2F (13g)
where
co=R(u+2) Ko =K — K>. (14)

Expressions (12) and (13) give a general solution in termB &r a planar decagonal
quasicrystal. Oncé satisfying equation (11) is determined from given boundary conditions,
the displacement and stress fields will readily be calculated from (12) and (13), respectively.

3. Solution to a dislocation in a planar decagonal quasicrystal

Utilizing the formulae of a general solution suggested above and the Fourier transform
technique, the analytical solution for a dislocation in a planar decagonal quasicrystal of point
group 10 can be obtained. Consider a dislocation with the core at the origin: the Burgers
vector is denoted ds= b @ b = (b}, b}, by, by), where

f du; = b) f dw; = bt (15)
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in which the integrals in (15) should be taken along the Burgers circuit surrounding the
dislocation core inE| [19]. Here we calculate only the elastic field for a typical problem,
which corresponds tbﬂ #0,b1 # 0, bg = by = 0. For brevity, we decompose this problem
into two separate cases, one fgr = 0 and the other fob] = 0.

First, for the former, it is concluded thas,, w1, w, vanish on the; axis due to symmetry
and so the boundary conditions in the upper half-plane can be summarized below if denoting
X1 =X,X2=Yy

022(x,00 =0 (162)
wl(xa 0) = w2(~X:9 0) =0 (1%, C)
f duy = b} f dup =0 (164, €)
oij(x,y) > 0 H;j(x,y) —> 0 x2+y2 — oo. 17)

Performing the Fourier transform of equation (11) with respeat y@elds an ordinary
differential equation, which, on account of the regularity conditions at infinity (17), possesses
a solution of the form

F = (4*RH)xy e il (18)
whereX = (A, B, C, D), Y = (1, y, y2, y*)T andF is the Fourier transform of , defined by

+00 .
F= / F(x,y) €% dx (19)
—0o0
where A, B, C and D are arbitrary functions ot to be determined from boundary
conditions (16), the superscriptdenotes the transposition of a matrix and the fa@tof R?) 1
in (18) is introduced for convenience.
Inserting (18) into the Fourier transformed forms of (12) results in

1 = i TRoX[2nE%Y" + (m — 5n)|E|Y” — (2m — 5n) Y] e I (20a)
lip = |E| 7 RoX[2nE2Y' — (m +5n)|E|Y" + (2m + 5n) Y| e ¥ (20b)
W1 = icot TRIX[41EFY — 1262y’ + 15/£|Y” — 10y e KD (20c)
Wy = colé| TRGX[AIEPY — 128%Y" + 15E|Y” — (10 +eqRE) Y] €75V (20d)
where

m=cy+cy n=cy—ci eo = —[per + 2u +1)c2]/(Reo)  (21)

Ro = (Ry+iR,SgNE)/R Ro = (R, — iR>SQNE)/R. (22)

Similarly, it follows from (13) that

611 = 2c0coR T RoX (—2£%Y' + 8l€|Y” — 13Y"") e Iy (23a)
620 = 2c0coR IR0 X (262Y' — 4|g|Y" +3Y") e ¥ (230)
612 = 621 = i2coc2R™1Ro(SQNE) X (2£2Y" — B|£|Y" + 7Yy e Iy (230)
Hyy = coKoREX[41E1PY — 1652Y" + 27|E|Y" — (25 +e,R2) Y e Y (23d)
Hy = coKoREX[—4613Y + 1262y’ — 15/£|Y" + (10— e1R2) Y e P (23e)
Hyp = icoKoR2(sgné) X[—4|£°Y + 1262y’ — 15|Y” + (10 +e,R2)Y "] e 51 (23)

Ho1 = icoKoR3(sgng) X[—41 %Y + 1662Y" — 27|€|Y" + (25— e1R3)Y""] eI (23g)
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where sgrt isequalto 1 a§ > 0or—1as¢ < 0,
2 / /
o1 = c1C2 ep = cic2 [y + &)
CoKoR CoKoR Cc1 Cc2 (24)
c) = 2u+1)Ky— R? ch=nkKs— R?

A comparison of the boundary conditions &) with (20c, d) and (22) for y = 0
yields
4A1 =9C, B1=2C; D=0 (25)

whereA; = A|£|3, By = B£?, C, = 2C|£|, D, = 6D and( is an arbitrary function of to
be determined from the remaining boundary conditiong (%
Upon substitution of the above results into §20), after some algebra, we have

% duq = —4C1R_1(R1 ReC1 + Ry sgné Im Cy) (263)

f dus = 4c1R“1(Ry ReCy — Ry1sgné Im Cy) (26b)

where Re and Im denote the real and the imaginary parts of a complex variable, respectively.
Comparing (16, ¢) with (26) yields
C1 = —Rob}/(4c1). (27)

Therefore, substituting (27) in conjunction with (25) into (20) and making use of the
inverse Fourier transform results in

b _
up = —1[tan‘1 (X) + 2 62%} (28a)
2 X c1 r
b” _ 2
P B A S AT (28b)
2 a c1 a r?
[ 3 2.2 4 .2
coby [ R12x%y | R y“(3x°+y9)
= — += 2
w1 21cy |: R r* R r4 (280)
I 202.2 4 2 3
coby [ Ry y“(3x“+y%) = Ro2x%y
— = + = 28d
w2 27'[c1|: R r4 R r* (284)

wherer = \/x2 + y2anda, the radius of the dislocation core, makes the log term dimensionless.
From (23), by using (25) and (27) we obtain

cocab) y(3x2 +y?)

o011 = —
1 mciR r4
cocob) y(x% — y?)
- JTC]_R r4
o — oo coczb! x(x% — y?)
2TOANT TR
Heo— _coKobl _& x2y(3x2 — y?) N &x3(3y2 —x?
H we1 | R r6 R ré
b _ _CoKobi[Rix®y(@By? —x%)  Roxy®(3x’ —y?)
2= T h | R ré R ré
b _CoKob1 [ Rixy*(@x® —y?) | Rpx’y(3y* — x?)
2 wc1 | R r® R r6
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Hy =

_oKobi[  Rix®@By’—x%)  Rpx’y(@3x’ - y2>] (29)

wer | R r6 R r6

Second, for the latter, i.e. for the caseb@f: 0, an analogous procedure, as just solved
above, reduces to

c1bt {&'xy c1— ¢ Zx)’j +&[y2 La—c yz(xz_yz)“

ug =

meoer | R | r? c1 rt R | r? c1 rd
c1bt Ri[y? ca—c2y?(x?—y?)7] | Ro[xy  c1—c22xy®
Uz = e i 4 t—lz T 4
7T Cper R|r c1 r R|r c1 r
e i 4 B R 07300 200 3
2 X e1R? 3rb e1R? 3rb
bi r (R} — R3)y2(3x2 — y»)%  2RiRo xy(3x% — y?)(3y2 — x?)
wo = ezln — + -
21eq a R? 3rb R? 3ré
Zczbi‘ Ry xzy(3x2 — yz) R> x3(3y2 — x2)
o= — - =
meiR| R ré R ré
2 1 R 3 2 _ 2 R 2 2_ 2
099 = — coby [ Ry y"(3x” — y7) + 2y By~ — x7) (30)
meiR| R ré R r6
oo 2cobt &xyz(Bx2 ) N &xzy(f:’)y2 —x?
12 21 meiR| R ré R ré
Kobi (R? — R 2R1R»
Hyy = 27'[811 { —(e1 +e2)% +x[%h21()m y) — 72 haa(x, y)
Koby X (R? — RY) 2R1R>
Hyp = Smer (e1+e2) 5 +y Thzl()c, V)~ e ha2a(x, y)
Kobix [ (R? — R?) 2R1R;
Hp = — 27121 |: 1R2 2 hap(x, y) + R2 ha1(x, y)
Kobiy [ (R? — R?) 2R1R>
Hy = — 27121 1R2 2 hap(x, y) + R2 h2a(x, y)
where
L R e R C )
21(x, y) = 8
2_ .2 2 2y(242 _ 2\ (202 _ 42 (31)
ool )_Z(x — ), 6Ty~ y)EYT —xT)
22(x,y) = 4 8 '

Consequently, the sum of the expressions in (28), (29) and (30) for the corresponding
variables will give the analytical expressions, denoted'ds w'”, o and H”, for the
elastic field induced by a dislocatioh!( 0, b3, 0) in a planar decagonal quasicrystal of point
group 10.

For another typical problem, in which the Burgers vector of a dislocation is denoted by
(0, b), 0,by), an entirely similar consideration will yield similar results, which are omitted

here. Alternatively, the expressions, denotech@s w'?, o2 and H,?, for the elastic
field for (O,bg, 0,by) can also be determined from those fbﬁ,(o, bi-, 0) by rotating the
coordinate system [16], i.e. only making the substitutiens> y, y — —x, b! — bg,

bt — —bt, uP - uP, u - —u?, W - —w? andw® — w®. Therefore, the

explicit analytical expressions for the elastic field for a dislocathﬁml(g, b1, by) in a planar
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decagonal quasicrystal of point group 10 can be obtained by superposition of the corresponding
expressions for the elastic fields fmil‘(o, bi, 0) and (Obg, 0,b5), namely

-, @ 2 — D (@) —+D )
wj=u;" *tu; wj=w;" tw; 0ij = 0;;" t 0y

uj
Hy=H}+H? ij=12 (32)

4. A straight dislocation in a decagonal quasicrystal

As we know, any realistic quasicrystal is a spatial solid, not a planar medium. Therefore,
in this section, we consider a straight dislocation line in a decagonal quasicrystal with Laue
class 1Qm, or with point groups 1010 and 1Qm; here a decagonal quasicrystal refers to

a three-dimensional solid periodically stacked in a two-dimensional quasiperiodic structure
with decagonal symmetry. Then, the only discrepancy between a decagonal quasicrystal and a
planar decagonal quasicrystal is that there is an additional phonon displacesnating the
periodic direction for the former. For convenience, the generalized Hooke law is still expressed
by (5) wherei, j =1, 2, 3, w3 = 0 and the elastic constant matric€,[[ K] and [R] can be
obtained by group representation theory [17, 20], i.e. the expressions for the elastic constants
K;jn andR;;y take the same forms as the last two in (3), while for the elastic consignts

Cr111= Ca2=C11 C3333= C33 C1133= C2233= C13
Cr323= C3131= Cu4 Cr120=Cy2 2C1212 = C1111 — C1120 = Cep.

Inthis case, there are ten independent elastic constants, five in the phonon field, three in the
phason and two associated with the phonon—phason coupling. For a straight dislocationlineina
decagonal quasicrystal, the explicit expressions for the elastic field, in general, are quite difficult
to derive, mainly due to the complication of solving a tenth-order linear algebraic equation
associated with the governing equations. Of course, the theoretically formal solution can be
obtained by means of the generalized Lekhnitskii-Eshelby—Stroh method [21]. However, the
explicit analytical expressions for the elastic field can be obtained for the special case where
a straight dislocation line is parallel to the periodic direction, theaxis. In this case, it is
evident that all the variables are independentpfamelyds = 0. It further indicates that
the governing equations (5) whetej = 1, 2, 3 andws = 0 for a decagonal quasicrystal
can be decoupled into the variables in the quasiperiodic plane and the phonon displacement
u3z along the periodic direction. Moreover, for the quasiperiodic plane the variables satisfy the
same equations as (5) withj = 1, 2 and only taking"1; andCeg instead of 2 + A andp,
respectively, and fo#; it satisfies

Auz = 0. (33)

Consider a straight dislocation line parallel to the periodic direction in a decagonal
quasicrystal with the Burgers vector= bl @ b = (b}, b}, b, bi-, b3). Based on the
above analysis, the elastic field can be obtained as follows:

@ 2 @ ) .
uj=u; +u; wj=w;" tw; j=12

bII
Uz = 23 tan 2

7(Tl> (Zic 1 ) .. (34)
(Tij:(Tij +O'ij Hiszij +Hij l,]=1,2

C44bg y C44bg X

013 =031 = — 023 =032 = -

27 12 27 r2
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whereu;, w;, o;; and H;; (i, j = 1, 2) are those given by (32), which corresponds to the
elastic field for b}, b}, 0, bi-, b5), only taking into accounty; andCes instead of 2 + A and
u, respectively, in all the expressions in the preceding section.

The energy per unit length on a straight dislocation line can be evaluated by the integral

1
W = z/(oij‘gij +H,~jw,~j) ds (35)

where the integral should be taken over a circular annalss r < Ry, a the radius of the
dislocation core. After some manipulation, the final result of the energy per unit length on a
straight dislocation with the Burgers vectat (0, b}, bi-, 0) is

0

2c0c2(b)2  Koler + e2) (bi)? 1 R
W:[ coc2(by) N ole1+e2)(b7) +C44(b3)2}aln7 (36)

ClR e

If b = ¢b), bl = b!'sing andb} = bl cosp, wheret is a constanth! is the magnitude of
the phonon part), 0,54) in E; of a dislocatiorb andg is the angle inE; between the vector
of the phonon parti(!, 0, b) in E of a dislocatiorb = (b!, 0, bl, b1-, 0) and the dislocation
line, we have

2
+ C44C08 (p] (Zn) in Ro. (37)
a

W— 2coc2 SIN? ¢ . Ko(e1 + )2 sir? ¢
c1R €1

5. Discussion and conclusion

For a planar decagonal quasicrystal of point grouja/&Owith the presence of a dislocation,

there are only five independent elastic constants [11], i.e. it corresponds to the special case of
a planar decagonal quasicrystal of point group B9:= 0. Therefore, the present solution

for the point group 10, if setting, = 0 and soR = R, reduces to the result obtained in [15]

and [16].

Similarly, for a straight dislocation line parallel to the periodic direction in a decagonal
quasicrystal with Laue class 1@mm, or with point groups 1@m, 1022,10m2 and 10 mmm,
for which there are nine independent elastic constants, the dislocation-induced elastic field can
be obtained from the limitatio®, = 0 of the results in a decagonal quasicrystal with Laue
class 1@m, or with point groups 1010 and 1@, which is the same as the results given in
[11].

Onthe other hand, when the displacement funcidakes some simple polynomials such
asaox’, a1x8y, box8, bix"y etc, for example, the results given by (12) and (13) are several
simple elastic solutions suitable for treating a decagonal quasicrystal rectangular plate under
the action of uniform or linear tension or pressure. However, these simple elastic solutions
seem to be not easy to obtain by other methods.

By the way, one can apply the expression for the energy on a dislocation given by (36)
to analyse the dissociation of a dislocation in a decagonal quasicrystal. Unlike the method
mentioned above, some other methods have been developed to study the dissociation of a
dislocation in quasicrystals in [22] and [23].

The present solution can be used as a fundamental solution for a dislocation in a decagonal
quasicrystal. Therefore, many elasticity problems in a decagonal quasicrystal can be directly
solved with the aid of this fundamental solution by superposition.
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