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Abstract. A straight dislocation line in a decagonal quasicrystal is considered. For a decagonal
quasicrystal of point groups 10,10 and 10/m with a straight dislocation parallel to the periodic
direction, the basic governing equations are solved by decoupling this problem into a plane elasticity
problem and an antiplane elasticity problem. For the latter, the solution is known; for the former,
it is reduced to a single equation,14F(x, y) = 0,1 being the harmonic operator, by introducing
a displacement functionF . A general solution is formulated. Using a general solution and the
Fourier transform, the explicit expressions for the dislocation-induced elastic field in a decagonal
quasicrystal are obtained and the energy per unit length on the dislocation is given.

1. Introduction

Quasicrystals—solids with a long-range orientational order and a long-range quasiperiodic
translational order [1, 2]—have become the topic of considerable experimental and theoretical
studies in physics of condensed matter. Structural, electronic, magnetic, thermal and
mechanical properties of quasicrystals has been investigated intensively. In particular, the
research of defects has attracted extensive attention in both experiment and theory. For
conventional crystals, the elasticity theory of defects, as outlined in [3] and [4], has been
established and developed over 40 years. For quasicrystals, however, within the framework
of the Landau theory, the elasticity theory of defects such as dislocations was formulated
in 1985 [2, 5, 6], although the first experimental evidence for the existence of dislocations
in quasicrystals was not provided until 1989 [7–9]. According to the continuum theory of
dislocations in the general scheme of quasicrystal elasticity theory [10], the explicit expressions
for the elastic field, in particular for the displacement field, induced by a dislocation have been
obtained in several quasicrystals [11–15]. The first work in this area may be that of De and
Pelcovits [16], who analysed a dislocation in a planar pentagonal quasicrystal and gave the
analytical expressions for dislocation-induced displacement field by the iterative approach. So
far many methods such as the Green function method [11], the Eshelby method [14] and the
displacement function method [15] have been developed to derive analytical expressions for
dislocation-induced elastic field in various quasicrystals.

This paper considers a straight dislocation line in a decagonal quasicrystal with Laue
class 10/m, or with point groups 10,10 and 10/m, where the dislocation line is parallel to the
periodic direction. A general solution is suggested by introducing a displacement function for
a planar decagonal quasicrystal with point group 10 in section 2. The analytical expressions for
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the displacement field as well as stress field induced by a dislocation are obtained in section 3.
The elastic field and the energy per unit length on the straight dislocation line are both given
in section 4.

2. General solution of the governing equations for a planar decagonal quasicrystal

According to the description of an-dimensional quasicrystal as a quasiperiodic structure which
is periodic in (3 +n)-dimensional space (16 n 6 3), the (3 +n)-dimensional space can be
divided into the direct sum of two orthogonal subspaces, one being three-dimensional physical
or parallel space,E‖, and the other beingn-dimensional perpendicular or complementary
space,E⊥. Therefore, for each quasicrystal, there are two orthogonal coordinate systems, one
inE‖ and the other inE⊥. In addition to the usual phonon displacementsui and phonon strains
εij describing the local shifts of atoms inE‖, one must introduce the phason displacementswi
and phason strainswij to describe the local rearrangements of atoms inE⊥. In this section, we
consider a planar decagonal quasicrystal of point group 10, which refers to a planar medium
with decagonal symmetry. In this case, the generalized Hooke law is as follows [11, 17]:

σij = Cijklεkl +Rijklwkl Hij = Kijklwkl +Rklij εkl (1)

with

εij = (∂jui + ∂iuj )/2 wij = ∂jwi (2)

where∂j = ∂/∂xj (the argumentxj is always inE‖), σij andHij are the stresses inE‖ andE⊥,
respectively,Cijkl andKijkl elastic constants in the phonon and the phason field, respectively,
andRijkl the phonon–phason coupling elastic constants. Moreover,

Cijkl = λδij δkl +µ(δikδjl + δilδjk)

Kijkl = K1δikδjl +K2(δij δkl − δilδjk)
Rijkl = R1(δi1− δi2)(δij δkl − δikδjl + δilδjk)

+R2[(1− δij )δkl + δij (δi1− δi2)(δk1δl2 − δk2δl1)]

(3)

wherei, j , k, l = 1, 2.
Substituting (1) and (2) into the equilibrium equations

∂jσij = 0 ∂jHij = 0 (4)

leads to the basic governing equations for a planar decagonal quasicrystal of point group 10
below:

Cijkl∂j ∂luk +Rijkl∂j ∂lwk = 0 (5a)

Rklij ∂j ∂luk +Kijkl∂j ∂lwk = 0. (5b)

Applying the theory of partial differential equations (e.g. see [18]), it follows from
equations (5) that the displacement field can be expressed in terms of two functionsϕ and
ψ as follows:

u1 = (µ + λ)∂1∂2ϕ +µ∂2
1ψ + (2µ + λ)∂2

2ψ (6a)

u2 = −[(2µ + λ)∂2
1ϕ +µ∂2

2ϕ + (µ + λ)∂1∂2ψ ] (6b)

w1 = −ω{[2R1∂1∂2 − R2(∂
2
1 − ∂2

2)]ϕ + [R1(∂
2
1 − ∂2

2) + 2R2∂1∂2]ψ} (6c)

w2 = ω{[R1(∂
2
1 − ∂2

2) + 2R2∂1∂2]ϕ − [2R1∂1∂2 − R2(∂
2
1 − ∂2

2)]ψ} (6d)

where

ω = µ(2µ + λ)/R2 R2 = R2
1 +R2

2. (7)
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Inserting expressions (6) into equations (5) reveals that equations (5a) are identically
satisfied and that equations (5b) become

(2µ + λ)c2∂131ϕ +µc1∂232ϕ + (2µ + λ)c2∂231ψ − µc1∂132ψ = 0 (8a)

(2µ + λ)c2∂132ϕ − µc1∂231ϕ + (2µ + λ)c2∂232ψ +µc1∂131ψ = 0 (8b)

where

31 = R1∂2(3∂
2
1 − ∂2

2) +R2∂1(3∂
2
2 − ∂2

1) 32 = R1∂1(3∂
2
2 − ∂2

1)− R2∂2(3∂
2
1 − ∂2

2)

c1 = (2µ + λ)K1− R2 c2 = µK1− R2.
(9)

A further simplification of (8) is achieved if we now choose a new functionF , which is
called the displacement function, such that

ϕ = −(2µ + λ)c2R∂231F +µc1R∂132F (10a)

ψ = (2µ + λ)c2R∂131F +µc1R∂232F. (10b)

In this case, it is easily seen that (8a) is automatically satisfied and (8b) leads to

14F = 0 (11)

where1 = ∂2
1 + ∂2

2. Thus, the system of equations (5) is reduced to a single equation (11) for
F . Substituting (10) into (6) yields the displacement and stress fields:

u1 = R[c2∂131 + c1∂232]1F (12a)

u2 = R[c2∂231− c1∂132]1F (12b)

w1 = −c03132F (12c)

w2 = −R−1[c2(2µ + λ)32
1 + c1µ3

2
2]F (12d)

σ11 = 2c0c2∂
2
2311F (13a)

σ22 = 2c0c2∂
2
1311F (13b)

σ12 = σ21 = −2c0c2∂1∂2311F (13c)

H11 = −c1c2R∂21
3F +R−1K0∂2[c2(2µ + λ)32

1 + c1µ3
2
2]F (13d)

H12 = c1c2R∂11
3F − R−1K0∂1[c2(2µ + λ)32

1 + c1µ3
2
2]F (13e)

H21 = −c1c2R∂11
3F − c0K0∂23132F (13f)

H22 = −c1c2R∂21
3F + c0K0∂13132F (13g)

where

c0 = R(µ + λ) K0 = K1−K2. (14)

Expressions (12) and (13) give a general solution in terms ofF for a planar decagonal
quasicrystal. OnceF satisfying equation (11) is determined from given boundary conditions,
the displacement and stress fields will readily be calculated from (12) and (13), respectively.

3. Solution to a dislocation in a planar decagonal quasicrystal

Utilizing the formulae of a general solution suggested above and the Fourier transform
technique, the analytical solution for a dislocation in a planar decagonal quasicrystal of point
group 10 can be obtained. Consider a dislocation with the core at the origin: the Burgers
vector is denoted asb = b‖ ⊕ b⊥ = (b‖1, b‖2, b⊥1 , b⊥2 ), where∮

duj = b‖j
∮

dwj = b⊥j (15)
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in which the integrals in (15) should be taken along the Burgers circuit surrounding the
dislocation core inE‖ [19]. Here we calculate only the elastic field for a typical problem,
which corresponds tob‖1 6= 0,b⊥1 6= 0,b‖2 = b⊥2 = 0. For brevity, we decompose this problem
into two separate cases, one forb⊥1 = 0 and the other forb‖1 = 0.

First, for the former, it is concluded thatσ22,w1,w2 vanish on thex1 axis due to symmetry
and so the boundary conditions in the upper half-plane can be summarized below if denoting
x1 = x, x2 = y

σ22(x, 0) = 0 (16a)

w1(x, 0) = w2(x, 0) = 0 (16b, c)∮
du1 = b‖1

∮
du2 = 0 (16d, e)

σij (x, y)→ 0 Hij (x, y)→ 0
√
x2 + y2→∞. (17)

Performing the Fourier transform of equation (11) with respect tox yields an ordinary
differential equation, which, on account of the regularity conditions at infinity (17), possesses
a solution of the form

F̂ = (4ξ4R2)−1XY e−|ξ |y (18)

whereX = (A,B,C,D), Y = (1, y, y2, y3)T andF̂ is the Fourier transform ofF , defined by

F̂ =
∫ +∞

−∞
F(x, y)eiξx dx (19)

where A, B, C and D are arbitrary functions ofξ to be determined from boundary
conditions (16), the superscriptT denotes the transposition of a matrix and the factor(4ξ4R2)−1

in (18) is introduced for convenience.
Inserting (18) into the Fourier transformed forms of (12) results in

û1 = iξ−1R̃0X[2nξ2Y ′ + (m− 5n)|ξ |Y ′′ − (2m− 5n)Y ′′′] e−|ξ |y (20a)

û2 = |ξ |−1R̃0X[2nξ2Y ′ − (m + 5n)|ξ |Y ′′ + (2m + 5n)Y ′′′] e−|ξ |y (20b)

ŵ1 = ic0ξ
−1R̃2

0X[4|ξ |3Y − 12ξ2Y ′ + 15|ξ |Y ′′ − 10Y ′′′] e−|ξ |y (20c)

ŵ2 = c0|ξ |−1R̃2
0X[4|ξ |3Y − 12ξ2Y ′ + 15|ξ |Y ′′ − (10 +e0R

2
0)Y
′′′] e−|ξ |y (20d)

where

m = c2 + c1 n = c2 − c1 e0 = −[µc1 + (2µ + λ)c2]/(Rc0) (21)

R0 = (R1 + iR2 sgnξ)/R R̃0 = (R1− iR2 sgnξ)/R. (22)

Similarly, it follows from (13) that

σ̂11 = 2c0c2R
−1R̃0X(−2ξ2Y ′ + 8|ξ |Y ′′ − 13Y ′′′) e−|ξ |y (23a)

σ̂22 = 2c0c2R
−1R̃0X(2ξ

2Y ′ − 4|ξ |Y ′′ + 3Y ′′′) e−|ξ |y (23b)

σ̂12 = σ̂21 = i2c0c2R
−1R̃0(sgnξ)X(2ξ2Y ′ − 6|ξ |Y ′′ + 7Y ′′′) e−|ξ |y (23c)

Ĥ11 = c0K0R̃
2
0X[4|ξ |3Y − 16ξ2Y ′ + 27|ξ |Y ′′ − (25 +e2R

2
0)Y
′′′] e−|ξ |y (23d)

Ĥ22 = c0K0R̃
2
0X[−4|ξ |3Y + 12ξ2Y ′ − 15|ξ |Y ′′ + (10− e1R

2
0)Y
′′′] e−|ξ |y (23e)

Ĥ12 = ic0K0R̃
2
0(sgnξ)X[−4|ξ |3Y + 12ξ2Y ′ − 15|ξ |Y ′′ + (10 +e2R

2
0)Y
′′′] e−|ξ |y (23f)

Ĥ21 = ic0K0R̃
2
0(sgnξ)X[−4|ξ |3Y + 16ξ2Y ′ − 27|ξ |Y ′′ + (25− e1R

2
0)Y
′′′] e−|ξ |y (23g)
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where sgnξ is equal to 1 asξ > 0 or−1 asξ < 0,

e1 = 2c1c2

c0K0R
e2 = c1c2

c0K0R

(
c′1
c1

+
c′2
c2

)
c′1 = (2µ + λ)K2 − R2 c′2 = µK2 − R2.

(24)

A comparison of the boundary conditions (16a–c) with (20c, d) and (22b) for y = 0
yields

4A1 = 9C1 B1 = 2C1 D1 = 0 (25)

whereA1 = A|ξ |3, B1 = Bξ2, C1 = 2C|ξ |,D1 = 6D andC1 is an arbitrary function ofξ to
be determined from the remaining boundary conditions (16d, e).

Upon substitution of the above results into (20a, b), after some algebra, we have∮
du1 = −4c1R

−1(R1 ReC1 +R2 sgnξ ImC1) (26a)∮
du2 = 4c1R

−1(R2 ReC1− R1 sgnξ ImC1) (26b)

where Re and Im denote the real and the imaginary parts of a complex variable, respectively.
Comparing (16d, e) with (26) yields

C1 = −R0b
‖
1/(4c1). (27)

Therefore, substituting (27) in conjunction with (25) into (20) and making use of the
inverse Fourier transform results in

u1 = b
‖
1

2π

[
tan−1

(
y

x

)
+
c1− c2

c1

xy

r2

]
(28a)

u2 = b
‖
1

2π

[
− ln

r

a
+
c1− c2

c1

(
ln
r

a
+
y2

r2

)]
(28b)

w1 = c0b
‖
1

2πc1

[
R1

R

2x3y

r4
+
R2

R

y2(3x2 + y2)

r4

]
(28c)

w2 = c0b
‖
1

2πc1

[
R1

R

y2(3x2 + y2)

r4
+
R2

R

2x3y

r4

]
(28d)

wherer =
√
x2 + y2 anda, the radius of the dislocation core, makes the log term dimensionless.

From (23), by using (25) and (27) we obtain

σ11 = −c0c2b
‖
1

πc1R

y(3x2 + y2)

r4

σ22 = c0c2b
‖
1

πc1R

y(x2 − y2)

r4

σ12 = σ21 = c0c2b
‖
1

πc1R

x(x2 − y2)

r4

H11 = −c0K0b
‖
1

πc1

[
R1

R

x2y(3x2 − y2)

r6
+
R2

R

x3(3y2 − x2)

r6

]
H22 = −c0K0b

‖
1

πc1

[
R1

R

x2y(3y2 − x2)

r6
− R2

R

xy2(3x2 − y2)

r6

]
H12 = −c0K0b

‖
1

πc1

[
R1

R

xy2(3x2 − y2)

r6
+
R2

R

x2y(3y2 − x2)

r6

]
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H21 = −c0K0b
‖
1

πc1

[
− R1

R

x3(3y2 − x2)

r6
+
R2

R

x2y(3x2 − y2)

r6

]
. (29)

Second, for the latter, i.e. for the case ofb
‖
1 = 0, an analogous procedure, as just solved

above, reduces to

u1 = c1b
⊥
1

πc0e1

{
R1

R

[
xy

r2
− c1− c2

c1

2xy3

r4

]
+
R2

R

[
y2

r2
+
c1− c2

c1

y2(x2 − y2)

r4

]}
u2 = c1b

⊥
1

πc0e1

{
− R1

R

[
y2

r2
− c1− c2

c1

y2(x2 − y2)

r4

]
+
R2

R

[
xy

r2
+
c1− c2

c1

2xy3

r4

]}
w1 = b⊥1

2π

[
tan−1 y

x
+
(R2

1 − R2
2)

e1R2

xy(3x2 − y2)(3y2 − x2)

3r6
+

2R1R2

e1R2

y2(3x2 − y2)2

3r6

]
w2 = b⊥1

2πe1

[
e2 ln

r

a
+
(R2

1 − R2
2)

R2

y2(3x2 − y2)2

3r6
− 2R1R2

R2

xy(3x2 − y2)(3y2 − x2)

3r6

]
σ11 = −2c2b

⊥
1

πe1R

[
R1

R

x2y(3x2 − y2)

r6
+
R2

R

x3(3y2 − x2)

r6

]
σ22 = −2c2b

⊥
1

πe1R

[
R1

R

y3(3x2 − y2)

r6
+
R2

R

xy2(3y2 − x2)

r6

]
σ12 = σ21 = −2c2b

⊥
1

πe1R

[
R1

R

xy2(3x2 − y2)

r6
+
R2

R

x2y(3y2 − x2)

r6

]
H11 = K0b

⊥
1

2πe1

{
− (e1 + e2)

y

r2
+ x

[
(R2

1 − R2
2)

R2
h21(x, y)− 2R1R2

R2
h22(x, y)

]}
H12 = K0b

⊥
1

2πe1

{
(e1 + e2)

x

r2
+ y

[
(R2

1 − R2
2)

R2
h21(x, y)− 2R1R2

R2
h22(x, y)

]}
H21 = −K0b

⊥
1 x

2πe1

[
(R2

1 − R2
2)

R2
h22(x, y) +

2R1R2

R2
h21(x, y)

]
H22 = −K0b

⊥
1 y

2πe1

[
(R2

1 − R2
2)

R2
h22(x, y) +

2R1R2

R2
h21(x, y)

]

(30)

where

h21(x, y) = 2xy(3x2 − y2)(3y2 − x2)

r8

h22(x, y) = 2(x2 − y2)

r4
+
(x2 − y2)(3x2 − y2)(3y2 − x2)

r8
.

(31)

Consequently, the sum of the expressions in (28), (29) and (30) for the corresponding
variables will give the analytical expressions, denoted asu

(1)
j , w(1)j , σ (1)ij andH(1)

ij , for the

elastic field induced by a dislocation (b‖1, 0,b⊥1 , 0) in a planar decagonal quasicrystal of point
group 10.

For another typical problem, in which the Burgers vector of a dislocation is denoted by
(0, b‖2, 0,b⊥2 ), an entirely similar consideration will yield similar results, which are omitted
here. Alternatively, the expressions, denoted asu

(2)
j , w(2)j , σ (2)ij andH(2)

ij , for the elastic

field for (0,b‖2, 0,b⊥2 ) can also be determined from those for (b
‖
1, 0, b⊥1 , 0) by rotating the

coordinate system [16], i.e. only making the substitutionsx → y, y → −x, b‖1 → b
‖
2,

b⊥1 → −b⊥2 , u(1)1 → u
(2)
2 , u(1)2 → −u(2)1 , w(1)1 → −w(2)2 andw(1)2 → w

(2)
1 . Therefore, the

explicit analytical expressions for the elastic field for a dislocation (b
‖
1, b‖2, b⊥1 , b⊥2 ) in a planar
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decagonal quasicrystal of point group 10 can be obtained by superposition of the corresponding
expressions for the elastic fields for (b

‖
1, 0,b⊥1 , 0) and (0,b‖2, 0,b⊥2 ), namely

uj = u(1)j + u(2)j wj = w(1)j +w(2)j σij = σ (1)ij + σ (2)ij

Hij = H(1)
ij +H(2)

ij i, j = 1, 2. (32)

4. A straight dislocation in a decagonal quasicrystal

As we know, any realistic quasicrystal is a spatial solid, not a planar medium. Therefore,
in this section, we consider a straight dislocation line in a decagonal quasicrystal with Laue
class 10/m, or with point groups 10,10 and 10/m; here a decagonal quasicrystal refers to
a three-dimensional solid periodically stacked in a two-dimensional quasiperiodic structure
with decagonal symmetry. Then, the only discrepancy between a decagonal quasicrystal and a
planar decagonal quasicrystal is that there is an additional phonon displacement,u3, along the
periodic direction for the former. For convenience, the generalized Hooke law is still expressed
by (5) wherei, j = 1, 2, 3,w3 ≡ 0 and the elastic constant matrices [C], [K] and [R] can be
obtained by group representation theory [17, 20], i.e. the expressions for the elastic constants
Kijkl andRijkl take the same forms as the last two in (3), while for the elastic constantsCijkl ,

C1111= C2222= C11 C3333= C33 C1133= C2233= C13

C2323= C3131= C44 C1122= C12 2C1212= C1111− C1122= C66.

In this case, there are ten independent elastic constants, five in the phonon field, three in the
phason and two associated with the phonon–phason coupling. For a straight dislocation line in a
decagonal quasicrystal, the explicit expressions for the elastic field, in general, are quite difficult
to derive, mainly due to the complication of solving a tenth-order linear algebraic equation
associated with the governing equations. Of course, the theoretically formal solution can be
obtained by means of the generalized Lekhnitskii–Eshelby–Stroh method [21]. However, the
explicit analytical expressions for the elastic field can be obtained for the special case where
a straight dislocation line is parallel to the periodic direction, thex3 axis. In this case, it is
evident that all the variables are independent ofx3, namely∂3 = 0. It further indicates that
the governing equations (5) wherei, j = 1, 2, 3 andw3 ≡ 0 for a decagonal quasicrystal
can be decoupled into the variables in the quasiperiodic plane and the phonon displacement
u3 along the periodic direction. Moreover, for the quasiperiodic plane the variables satisfy the
same equations as (5) withi, j = 1, 2 and only takingC11 andC66 instead of 2µ + λ andµ,
respectively, and foru3 it satisfies

1u3 = 0. (33)

Consider a straight dislocation line parallel to the periodic direction in a decagonal
quasicrystal with the Burgers vectorb = b‖ ⊕ b⊥ = (b

‖
1, b
‖
2, b
‖
3, b
⊥
1 , b

⊥
2 ). Based on the

above analysis, the elastic field can be obtained as follows:

uj = u(1)j + u(2)j wj = w(1)j +w(2)j j = 1, 2

u3 = b
‖
3

2π
tan−1 y

x

σij = σ (1)ij + σ (2)ij Hij = H(1)
ij +H(2)

ij i, j = 1, 2

σ13 = σ31 = −C44b
‖
3

2π

y

r2
σ23 = σ32 = C44b

‖
3

2π

x

r2

(34)
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whereuj , wj , σij andHij (i, j = 1, 2) are those given by (32), which corresponds to the
elastic field for (b‖1, b

‖
2, 0, b

⊥
1 , b

⊥
2 ), only taking into accountC11 andC66 instead of 2µ +λ and

µ, respectively, in all the expressions in the preceding section.
The energy per unit length on a straight dislocation line can be evaluated by the integral

W = 1

2

∫
(σij εij +Hijwij ) dS (35)

where the integral should be taken over a circular annulusa 6 r 6 R0, a the radius of the
dislocation core. After some manipulation, the final result of the energy per unit length on a
straight dislocation with the Burgers vector (b

‖
1, 0,b‖3, b⊥1 , 0) is

W =
[

2c0c2(b
‖
1)

2

c1R
+
K0(e1 + e2)(b

⊥
1 )

2

e1
+C44(b

‖
3)

2

]
1

4π
ln
R0

a
. (36)

If b⊥1 = ζb‖1, b‖1 = b‖ sinϕ andb‖3 = b‖ cosϕ, whereζ is a constant,b‖ is the magnitude of
the phonon part (b‖1, 0,b‖3) in E‖ of a dislocationb andϕ is the angle inE‖ between the vector
of the phonon part (b‖1, 0, b‖3) in E‖ of a dislocationb = (b‖1, 0, b‖3, b⊥1 , 0) and the dislocation
line, we have

W =
[

2c0c2 sin2 ϕ

c1R
+
K0(e1 + e2)ζ

2 sin2 ϕ

e1
+C44 cos2 ϕ

]
(b‖)2

4π
ln
R0

a
. (37)

5. Discussion and conclusion

For a planar decagonal quasicrystal of point group 10mm with the presence of a dislocation,
there are only five independent elastic constants [11], i.e. it corresponds to the special case of
a planar decagonal quasicrystal of point group 10:R2 = 0. Therefore, the present solution
for the point group 10, if settingR2 = 0 and soR = R1, reduces to the result obtained in [15]
and [16].

Similarly, for a straight dislocation line parallel to the periodic direction in a decagonal
quasicrystal with Laue class 10/mmm, or with point groups 10mm, 1022,10m2 and 10/mmm,
for which there are nine independent elastic constants, the dislocation-induced elastic field can
be obtained from the limitationR2 = 0 of the results in a decagonal quasicrystal with Laue
class 10/m, or with point groups 10,10 and 10/m, which is the same as the results given in
[11].

On the other hand, when the displacement functionF takes some simple polynomials such
asa0x

7, a1x
6y, b0x

8, b1x
7y etc, for example, the results given by (12) and (13) are several

simple elastic solutions suitable for treating a decagonal quasicrystal rectangular plate under
the action of uniform or linear tension or pressure. However, these simple elastic solutions
seem to be not easy to obtain by other methods.

By the way, one can apply the expression for the energy on a dislocation given by (36)
to analyse the dissociation of a dislocation in a decagonal quasicrystal. Unlike the method
mentioned above, some other methods have been developed to study the dissociation of a
dislocation in quasicrystals in [22] and [23].

The present solution can be used as a fundamental solution for a dislocation in a decagonal
quasicrystal. Therefore, many elasticity problems in a decagonal quasicrystal can be directly
solved with the aid of this fundamental solution by superposition.
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